
World Transactions on Engineering and Technology Education  2003 UICEE
Vol.2, No.3, 2003

 441

INTRODUCTION

Teaching programming is an important constituent part of
computing curricula. Despite the overwhelming increase in the
availability of computing resources to secondary schools, many
students arrive at universities with little understanding of the
programming discipline and the basic principles behind
software design. For this reason, the Joint Task Force on
Computing Curricula 2001 has chosen to define a separate
programming fundamentals knowledge area that enumerates the
basic programming skills that all students of computing must
acquire in order to prepare themselves for more advanced
study [1].

The authors have been teaching programming at faculties, and
also at high and elementary schools, for nearly 20 years,
primarily in Slovenia, with a couple of foreign courses in
European countries. The major faculties are: the Faculty of
Computer and Information Science, Faculty of Economics,
Faculty of Education, Faculty of Management, Faculty of
Maritime and Transport, University of Applied Sciences.
During the last two decades, the international exchange of
information was mainly concentrated in Europe and the USA.
Several professors of the mentioned faculties were also, from
time to time, teaching in the USA and European countries; thus
the contacts, comparisons and interactions were going on all of
the time.

Teaching programming is changing, as are programming
languages. Twenty years ago, Pascal dominated programming
in Slovenia, as in many European countries [2]. In the USA, on
the contrary, C and C-oriented languages were most often used
at the introductory level for technically-oriented students. Also,
industry in Europe was more oriented towards C. But for
teaching a first programming language, it was widely (and with
good reason) accepted in Europe that Pascal was much more

appropriate than C due to clearer and more understandable
uniform concepts [3].

Academia in Europe was eager to exchange arguments,
publications and experience regarding the teaching of Wirth’s
ideas. It was especially important that the language was
independent of any commercial factor so that it was
standardised and freely available and, at the same time, industry
followed theory with reasonable compilers enabling robust real-
life commercial applications. Yet with the emergence of
Microsoft and object-oriented programming, relations turned
around. Suddenly, it was industry that was defining its own
standards with Microsoft as the leading force. The gap and
distrust remains to this day.

While teaching primarily Pascal as the introductory
programming language, several other languages were also
under consideration in Slovenia, including:

• Prolog as an appropriate language for mathematically and

logically inclined students [4];
• Logo for youngsters;
• Snobol and Lisp for artificial intelligence.

Other languages like Cobol were not taught by the authors,
although specific interest groups, eg students of economics,
were using specific languages for databases and economic
applications. Nevertheless, the dominant programming
language in schools at all levels in Slovenia was Pascal.

Around ten years ago, it was becoming clear that Pascal did not
follow the object-oriented trend very successfully, and that
industrial solutions based on C were overwhelming. C++ and
Java were proclaimed as the leading languages in many
areas. Another major dilemma was related to programming
as a concept – should we, as educators, teach procedural,

Some experiences in teaching introductory programming at the faculty level

Viljan Mahnic & Matjaz Gams

Jozef Stefan Institute
Ljubljana, Slovenia

ABSTRACT: The article presents the authors’ experiences in teaching programming for nearly 20 years, mostly at faculty level. The
authors have been teaching at nearly ten faculties, mostly in Slovenia. The programming languages include versions of Pascal, C,
Java, Prolog, and Lisp, Logo and Snobol. The emphasis of the article is on the current teaching of programming at the introductory
faculty level. Java and JavaScript seem to be among the leading choices for technically- and non-technically-oriented students.
Indeed, over recent years, educators are facing certain changes in teaching programming since programming is becoming more and
more related to the Internet and the information society, and is also becoming increasingly integrated with intelligent information
services.

 442

object-oriented, Internet-oriented or tools- and environment-
integrated languages? Commercial languages were often
embedded into environments that enabled quick applications
for a class of problems. Great hope was devoted to report
generators, software engineering and automatic programming.
At that time, it was expected that in a decade or so it would
be possible to automatically generate programs from
specifications. This could mean the end of programming as
such or, at minimum, to a large extent. However, not much
truly changed. Today, practically every application is still hand-
coded. However, nobody in Slovenia teaches Pascal today.

Within this context, the choice of an appropriate programming
language for the first course plays an important role. Many
authors argue that the first programming language acquired by
students should encourage all of those aspects of good style that
we wish to impart to them, even if the language is not
necessarily widely used [5][6]. In that case, they are more likely
to preserve that style in other languages that may be more
prevalent, but less appropriate, for an introductory course. It is
far more important to instil good habits and then learn a second
or third language, rather than to let the marketplace influence
the first course. Additionally, the teaching language should
satisfy the five criteria proposed by Woodhouse, namely:
availability, teacher knowledge, ease of teaching and learning,
language utility, and an appropriate structure for problem
solving [7].

At the University of Ljubljana, Ljubljana, Slovenia, the
introductory programming course is taught at different faculties
and several programming languages were used over the last few
years. At the Faculty of Computer and Information Science,
Oberon was used from 1995 till 2001 [8]. It was then replaced
by Java in 2002. On the other hand, in the Faculty of
Education, where future teachers of computing are educated,
JavaScript was taught as the introductory language.

The aim of this article is to describe the authors’ experiences in
teaching each of the aforementioned programming languages
and provide analyses regarding their strengths and weaknesses.

OBERON

Oberon was introduced with the aim of exposing students to the
object-oriented paradigm, in addition to the usual paradigm of
procedural programming. It was chosen as a teaching language
because it has all of the desired properties considered necessary
for teaching good programming style (ie simple and precise
syntax, strong typing, modular program structure supporting
data abstraction), and because of its specific approach to OOP,
which enables a smooth transition from traditional procedural
programming to OOP [6].

In Oberon, object-orientation is achieved through the use of
type extension and procedure variables, thereby enabling
all object-oriented concepts and techniques to be explained
in terms of concepts already known from procedural
programming. It was also important that Oberon was based on a
Pascal-type of language, thus enabling a smooth transition.

Considering the aforementioned features, both programming
paradigms were combined in the design of the introductory
programming course: the procedural paradigm and the object-
oriented paradigm. The procedural programming paradigm was
the foundation upon which the concepts of object-oriented

programming were developed. At the beginning of the course,
basic data types and control structures were introduced. Then,
the concepts of procedures and modules were explained, as
well as input and output operations.

Special attention was paid to the concepts of scope (local and
global variables, nesting of scopes, plus export and import
declarations) and parameters (formal versus actual parameters,
value versus variable parameters). After mastering procedures
and modules, composite data types and dynamic data structures
were discussed, such as arrays, records and lists. Finally, the
most important procedural programming techniques, including
stepwise refinement, abstract data structure and abstract data
types, were presented to students.

In the second part of the course, object-oriented programming
concepts and techniques were covered. Extensions of familiar
concepts, from procedural programming (namely extension of
record types, procedure variables) were described first. OOP
concepts were then introduced one by one (ie generic modules,
heterogeneous data structures, objects and dynamic binding of
procedures, appropriate module organisation, type-bound
procedures, inheritance and redefinition of procedures) using
an example dealing with different kinds of vehicles (eg
automobiles, buses, trucks, etc). The use of Oberon enabled the
introduction of typical OO jargon to be deferred as long as
possible. All object-oriented techniques and concepts were
explained in terms of concepts already known from procedural
programming.

In order to obtain students’ opinions about the course, students
were surveyed each year utilising a questionnaire that consisted
of four groups of questions that dealt with the assessment of
previous knowledge, a general evaluation of the course content,
evaluation of the Oberon programming language, as well as
students’ opinions about OOP. Results of these surveys have
been published elsewhere [9][10].

The results of the surveys confirmed the correctness of the
basic considerations used in the design of the course. The
previous knowledge of new students was estimated correctly,
and the level of difficulty of the course was chosen
appropriately. Most students (about 90%) found the course
useful or even useful and interesting. The majority of students
(more than 60%) also agreed with the incorporation of OOP in
the introductory programming course. They felt that the portion
devoted to OOP was adequate, and they also supported
Oberon’s approach to OOP, which treats OOP as an extension
of traditional procedural programming.

However, it became evident that the choice of the teaching
language is a very delicate problem. There were different
opinions among students over what factor should prevail: the
support of principles of proper programming or commercial use
in practice. While 54% of students agreed that the
programming language must primarily support the elements of
good programming style, 46% of them strongly advocated the
criterion of commercial success. Despite the fact that 61% of
students judged Oberon suitable as a teaching language, the
survey also revealed its main deficiencies: the unreliable and
under-elaborated environment and insufficient commercial use.
It should be noted that in the academic years 1995/1996 and
1996/1997, students practised programming using Oberon
System 3 and Oberon V4, which implement Oberon as part of
the Oberon operating system.

 443

Furthermore, it was very hard to empirically evaluate Oberon’s
influence on programming style and habits of beginners. In
contrast to our belief that teaching Oberon can contribute a lot
to understanding of programming concepts and clear program
design many students perceived learning Oberon an
unnecessary effort because they will never use it in practice.
Therefore, we were forced to look for a new teaching language
for the introductory programming course.

JAVA

Java was chosen to replace Oberon because it as a modern
programming language that is object-oriented, platform
independent and has simpler and better syntax compared to
C or C++. Given the fact that it is suitable for both general-
purpose business programs, as well as for interactive
World Wide Web-based Internet applications, Java became
widespread in industry, as well as in academic environments.

The content of the course was redesigned in order to exploit
fully the strengths of Java with regard to object-oriented
programming and the development of Internet applications.
Nevertheless, given the fact that Java is a hybrid programming
language, the content of the course still combines both
programming paradigms: procedural and object-oriented.

After the introduction of basic data types and control structures,
the concepts of class, method and object are introduced.
Special attention is given to the use of constructors,
understanding blocks and scope, organising classes and data
hiding. Students are taught how to use pre-written classes and
import pre-written constants and methods. Arrays and strings
are then described, together with the methods of the String and
StringBuffer classes.

The central part of the course is devoted to inheritance. Basic
inheritance concepts, such as extending classes, overriding
superclass methods, working with superclasses that have
constructors and accessing superclass methods, are explained
first. This is followed by more advanced inheritance concepts,
ie creating and using abstract classes, using dynamic method
binding, creating arrays of sub-class objects, as well as creating
and using interfaces and packages.

At the end of the course, some – from the students’ viewpoint –
more attractive topics are covered, including an introduction to
graphics and applets. The content of the course is in a great
deal based on the text by Farrell, Java Programming [11].
However, the sequence of chapters is somewhere changed, and
the last three chapters are omitted because of the time
constraints of the course (the introductory programming course
in the Faculty of Computer and Information Science lasts 15
weeks, and comprises 45 hours of lectures and 45 hours of
laboratory practice.

The students were surveyed again with the aim of verifying
whether the decision to use Java and modify the course content
was right. The survey revealed that students almost
unanimously support the change of the teaching language. The
great majority of them (almost 95%) agreed that Java was the
right choice, and only 5% advocated the use of another
programming language. However, the survey also revealed that
students found the modified course content to be more difficult.
Table 1 shows the comparison between the answers regarding
the difficulty of the introductory programming course in the

academic year 1995/1996 (when Oberon was used for the first
time) and the academic year 2002/2003 (when Oberon was
replaced by Java). The portion of students who found the
course too difficult increased from a still acceptable 18.18% in
1995/1996 to almost 35% in 2002/2003.

Table 1: Comparison of students’ answers regarding the
difficulty of the introductory programming course.

Statement Oberon Java
The course is too easy 3.90% 4.46%
The level of difficulty is just right 77.92% 60.71%
The course is too difficult 18.18% 34.82%

It is thought that increased difficulty is a consequence of the
fact that Java’s syntax is more complex and some programming
concepts are more difficult to understand when compared with
Oberon. For example, in Java, a clear distinction is missing
between the concepts of class and module. Instead of having
two different concepts, the class is used for two different
purposes: to specify the structure of objects, as well as to
specify programming logic. This requires the static keyword to
be used in order to distinguish between instance methods and
variables on the one hand, and class methods and variables on
the other. Additionally, a significant shift of programming
concern is noticed when using Java: programmers must not be
focused purely on programming logic, but must also know how
to use comprehensive libraries of predefined classes and
methods. Finally, rather complicated concepts of event driven
programming must be introduced in order to understand
particular topics, including applets and computer graphics.

Considering the results of the survey, a reduction in the amount
of material covered during the introductory course is planned.
Also, some topics are to be moved to subsequent courses that
are taught in the second and third semesters.

JAVASCRIPT AND OTHER LANGUAGES

While Java, Pascal, C and Oberon were chosen as appropriate
choices for technically-oriented profiles, it is evident that most
students will not program complex applications, and probably
will not program at all. For example, an economics student will
most likely deal with finances, business, management and
organisational duties, and not actually code a program. One
choice is to introduce programming concepts like iterations and
recursions through program packages like Derive or
Mathematica. Indeed, this was done with a reasonable level of
success and students were soon able to solve simple tasks for
pedagogical or experimental purposes with the additional
possibility to graphically present data and results. These skills
are still regarded as being quite useful for professional work
and are worth teaching at various faculties.

Some programming languages like Snobol or Smalltalk, and
even Logo, were (or are) more or less becoming extinct.
Prolog and Lisp were competing for artificial-intelligence tasks.
Lisp dominated in the USA, while Prolog was stronger in
Europe. However, languages were successful for provoking
interesting academic-level thinking, but were not appropriate
for applications. While these languages are still used for
artificial intelligence and some specialised directions, their
emphasis on high-level thinking and programming is not
appropriate for introductory teaching programming at the
faculty level.

 444

JavaScript was chosen in Slovenia as the most appropriate for
the introductory teaching of non-technically-oriented students,
primarily because it is similar to Java-type of languages as the
most successful modern language, and because it is simpler and
easier to use than Java. JavaScript is not a full programming
language and is certainly not appropriate to code large
non-Internet applications. However, the major strength comes
from its relation to HTML and the Internet.

JavaScript programs are part of HTML, and adding
JavaScript’s scripts adds interactivity and functionality to user’s
Web pages. Through JavaScript, it is possible to introduce
basic knowledge and mental concepts of programming, even
though full programming is never taught. This is the main
attraction for non-technically-oriented students.

In addition, there are thousands of JavaScript programs on the
Internet, and there is rarely a need to code a program on one’s
own. Rather, interesting programs are modified and adapted to
specific needs and wishes. JavaScript is often referred to as a
scripting language, with the implications that it is easier to
script than to program.

The most important functional ability of JavaScript is that
it enables the use if intelligent services, which are the
backbone of an information society. Indeed, for real-life
applications, programmers might need advanced programs in
Java or other full-featured programming languages, but for
teaching and academic use, JavaScript was chosen as the most
appropriate in terms of attractiveness, simplicity and
pedagogical terms.

As expected, the authors’ experiences with JavaScript are
positive indeed. It is easy to introduce simple programming
techniques to even non-technically-oriented students. Students,
on the other hand, are quite satisfied when they see that writing
simple programs is a truly a simple task in JavaScript. Students
are also attracted to the Internet and are quite satisfied that what
they do can be directly applied to their Web pages.

CONCLUSIONS

The top days of massive number of students programming
applications are probably gone. Yet most of the real
applications today get coded in a way that is strikingly similar
to that undertaken a decade or two ago. The times of automatic
programming now seem further away than ten years ago. On the
other hand, programming skills are needed for technically and
non-technically-oriented students, if not for reasons other than
for use on the interactive Web.

Teaching introductory programming seems to be Java-oriented,
whether that be Java for technically-oriented students or
JavaScript for less technically educated ones. There are several
other languages, like Prolog, but their influence upon
introductory programming is not great. Only later, and for

specialised directions like artificial intelligence courses, do
other programming languages become relevant.

On the other hand, all the principles of good programming and
program methodologies remain nearly intact. The orientation is
currently focused on object and agent programming, while at
the same time, most of the simple programs are very similar to
traditional procedures and routines.

The knowledge of programming substantially varies and is, on
average, lower than it was a decade or two ago. Furthermore,
programming is no longer related to just writing programs:
scripting, environments, tools and support services are related
tasks and form a substantial part of the whole event.

REFERENCES

1. The Joint Task Force on Computing Curricula 2001, IEEE

Computer Society and Association for Computing
Machinery, Computing Curricula 2001 (draft). 6 March
(2000).

2. Gams, M., Bratko, I., Batagelj, V., Reinhardt, R.,
Martinec, M., Spegel, M. and Tancig, P., Programming
language Pascal I. Informatica, 3, 43-48 (1984).

3. Wirth, N., Recollections about the Development of Pascal.
In: Bergin, T.J. and Gibson, R.G., History of Programming
Languages II. London: Addison-Wesley (1996).

4. Bratko, I., Prolog Programming for Artificial Intelligence,
London: Addison Wesley (2001).

5. Burgess, C.J. and Jones, B.F., Should Software Quality be
a Major Issue when Teaching First Year Programming to
Software Engineers? In: King, G., Brebbia, C.A., Ross, M.
and Staples, G. (Eds), Software Engineering in Higher
Education. Southampton: Computational Mechanics
Publications, 75-81 (1994).

6. Mahnic, V. and Vilfan, B., A First Course in Object-
Oriented Programming Using Oberon. In: Uso, J-L.,
Mitic, P. and Sucharov, L.J. (Eds), Software Engineering
in Higher Education. Southampton: Computational
Mechanics Publications, 329-336 (1995).

7. Woodhouse, D., Introductory courses in computing: aims
and languages. Computer Educ., 7, 2, 79-89 (1983).

8. Reiser, M. and Wirth, N., Programming in Oberon, Steps
beyond Pascal and Modula. Reading: Addison-Wesley
(1992).

9. Mahnic, V. Some Experience in Teaching an Introductory
Programming Course Using Oberon. In: Tasso, C., Adey,
R.A. and Pighin, M. (Eds), Software Quality Engineering.
Southampton: Computational Mechanics Publications, 27-
36 (1997).

10. Mahnic, V. How to teach undergraduates the introductory
programming course? Proc. 8th Electrotechnical and
Computer Science Conf. ERK ‘99, Portoroz, Slovenia,
411-414 (1999) (in Slovene).

11. Farrell, J., Java Programming (2nd edn). Boston: Thomson
Course Technology (2003).

	Some experiences in teaching introductory programming at the faculty level

